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Abstract
We discuss quantum theory of fields φ defined on a (d + 1)-dimensional
manifold M with a boundary B. The free action W0(φ) which is a bilinear
form in φ defines the Gaussian measure with a covariance (Green function) G.
We discuss a relation between the quantum field theory with a fixed boundary
condition � and the theory defined by the Green function G. It is shown that
the latter results by an average over � of the first. The QFT in anti-de Sitter
space is treated as an example. It is shown that quantum fields on the boundary
are more regular than those on anti-de Sitter space.

PACS numbers: 04.62+v, 02.50Cw

1. Introduction

Quantum field theory (QFT) can be defined by a functional integral

dµ(φ) = Dφ exp(−W(φ)) (1)

where W is the classical action. From the point of view of formal properties (translational
invariance) of such a functional integral it should not matter whether we write in it φ or φ +φ0.
However, if the action is defined on a manifold with a boundary then the dependence on the
boundary value of φ seems to be crucial [1–3]. This means that a formal invariance under
translations in function space φ → φ + φ0 must be broken in the definition of the functional
integral in [1–3]. Then, the dependence on the boundary value breaks some symmetries present
in the classical action W . Such an approach to QFT disagrees with the conventional one based
on the mode summation [4–11] or perturbation expansion in the number N of components or
in the coupling constant. In this paper, we discuss a relation between the two approaches in
the framework of the functional integral. In the anti-de Sitter models of [1–3] the boundary
appears at the spatial infinity and coincides with the (compactified) Minkowski space. In the
Euclidean version of the anti-de Sitter space (in the Poincare coordinates) the boundary can
be realized as the Euclidean subspace of the hyperbolic space.
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We consider a Riemannian manifold M with the boundary B. The metric on M is
denoted by G and its restriction to B by g. We shall denote the coordinates on M by X and
their restriction to B by x; close to the boundary we write X = (y, x). The action for a
minimally coupled massless free scalar field φ reads

W0(φ) =
∫
M

dX
√

GGAB∂Aφ∂Bφ ≡ (φ,Aφ). (2)

The non-negative bilinear form (2) is defined on a certain domain D(A) of functions. Such
a bilinear form determines a self-adjoint operator A [12] (the definition of A depends on the
choice of D(A)) in the Hilbert space of square integrable functions. The free (Euclidean)
quantum field φ is defined by A−1 in the sense that the kernel of A−1 (the Green function)
provides a definition of the two-point correlation function of φ. The Green function G is a
solution of the equation

−AG ≡ ∂AGAB
√

G∂BG = δ (3)

where G = det GAB . The solution of equation (3) is not unique. If G′ is another solution of
equation (3) then G′ = G + S where S is a solution of the equation

AS = 0. (4)

We can determine G unambiguously imposing some additional requirements, for example,
requiring that G = 0 on the boundary. The various definitions of G correspond to various
choices of D(A) in the definition of the bilinear form (2) [12, 13].

2. The functional measure

To the free action (2) we add a local interaction V . Now, the total action reads

W = W0 + WI =
∫
M

dX
√

GGAB∂Aφ∂Bφ +
∫
M

dX
√

GV (φ). (5)

We can give a mathematical definition of the formal functional measure (1)

dµV (φ) = Z−1
0 dµ0(φ) exp(−WI) (6)

where the Gaussian measure µ0 is a mathematical realization of the formal integral

dµ0(φ) = Dφ exp(−W0).

The partition function Z0 in equation (6)

Z0 =
∫

dµ0 exp(−WI) (7)

determines a normalization factor.
We do not discuss in this paper some divergence problems which may arise if V is a

local function of φ and M has an infinite volume. We may assume that WI has been properly
regularized. We have a suggestion how to construct a regular QFT at the end of this paper.

A functional measure µ defines a probability distribution of fields φ(X); more precisely
the ‘smeared out’ fields

(φ, f ) =
∫

dX
√

Gφ(X)f (X).

In probability theory (see, e.g., [14, 15]) it is convenient to treat the probability measure µ

defined on some sets of random fields φ as one of many possible realizations of the probability
space (�,�, P ). The random field φ : � → R (at fixed X) is a map from the set � to the
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set of real numbers such that the two-point correlation function is an average over the ‘sample
paths’ ω ∈ �,

〈φ(X)φ(Y )〉 =
∫

�

dP(ω)φω(X)φω(Y )

where P is a probability measure on the σ -algebra � of subsets of �. The Gaussian measure
gives a realization of the Gaussian random field φω. It is defined [14, 16] by the mean

m(X) =
∫

dµ(φ)φ(X) ≡ 〈φ(X)〉
and the covariance

G(X, Y ) =
∫

dµ(φ)(φ(X) − 〈φ(X)〉)(φ(Y ) − 〈φ(Y )〉)

= 〈(φ(X) − 〈φ(X)〉)(φ(Y ) − 〈φ(Y )〉)〉 (8)

or by its characteristic function S,

S[if ] =
∫

dµ exp(i(φ, f )) = exp(i(m, f ) − 1

2
(f,Gf )).

Note that if we make a shift in the function space and define φ̃ = φ −m then φ̃ has zero mean.
Hence, we could subtract the mean value defining a new Gaussian measure

dµ̃(φ̃) = dµ(φ̃ + m).

The Gaussian measure is quasi-invariant under a shift χ if there exists an integrable function
ρ(φ, χ) such that

dµ(φ + χ) = dµ(φ)ρ(φ, χ). (9)

It is easy to see by a calculation of the characteristic function of both sides of equation (9) that
the measure µ is quasi-invariant under the shift χ if [16]

ρ(φ, χ) = exp(−(φ, Bχ) − 1
2 (χ, Cχ)) (10)

and the following equations are satisfied:

χ = GBχ (11)

(Bχ,GBχ) = (χ, Cχ). (12)

Equations (9)–(12) express the formal invariance of the functional measure (1) under
translations in the function space. If these conditions are not satisfied then it really does
matter what is the shift χ . In some papers on AdS-CFT correspondence [1–3, 11, 17] the
choice is made G(X, Y ) = GD(X, Y ) where GD is the Dirichlet Green function (vanishing on
the boundary) and 〈φ(X)〉 = φ0(X) where φ0(X) is a solution of the equation

Aφ0 = 0 (13)

with a fixed boundary condition �. We can see that equations (11) and (12) cannot be satisfied
if χ = φ0. Hence, the partition function Z[�] may depend on the boundary value �.

In general, choosing in QFT the boundary field φ0 �= 0 we break some symmetries of the
classical action (5). As an example we could consider the hyperbolic space with the metric

ds2 = y−2
(
dy2 + dx2

1 + · · · + dx2
d

)
. (14)

The hyperbolic space (14) has compactified Rd as the boundary [3]. The hyperbolic space
can be considered as a Euclidean version of anti-de Sitter space (AdSd+1 has compactified
Minkowski space as a boundary at conformal infinity [3]). It is also a Euclidean version
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of de Sitter space. However, the Poincare coordinates (14) are inappropriate for an analytic
continuation of quantum fields from the hyperbolic space to de Sitter space (there is also no
boundary at conformal infinity of de Sitter space).

The action (5) in the hyperbolic space is invariant under Rd rotations and translations
whereas the quantum field theory with a fixed boundary value of φ0 would not be invariant
under these symmetries. The approach to QFT assuming a boundary condition � for the field
φ0 and the Dirichlet boundary condition for the Green function leads to a different quantum
field theory than that developed in [5–8]. The latter is determined by the mean 〈φ〉 = 0 and
a choice of the Green function (the free propagator G solving equation (3)) which does not
vanish on the boundary. A possible way to determine the propagator is to construct it for a
real time by a mode summation and subsequently to continue analytically the propagator to
the imaginary time (for a class of models this is done in [4, 6]; the mode summation is also
not unique). It seems reasonable to choose the Green function G which has the symmetries of
the action W0 (1) as in [4–7, 11]. Then, the functional measure (6) will have the symmetries
of the action (5).

3. An average over the boundary values

After the heuristic discussion in section 2 of functional integration over fields with a fixed
boundary value we prove in this section that the approach starting from the free propagator G
is equivalent to a quantization around a classical solution φ0 with a prescribed boundary value
� if subsequently an average over all such boundary values is performed. First, let us assume
(in the sense that for the bilinear forms (f,Gf ) � (f,GDf ))

G � GD. (15)

If the operator A is an elliptic operator then inequality (15) follows from the maximum
principle for elliptic operators [18, 19]. We are also interested in operators A with singular
or vanishing coefficients which need not be elliptic. It is not clear whether the inequality (15)
can be satisfied for such operators. However, inequality (15) still holds true for the Green
functions of singular operators discussed in [20, 21] which are expressed by a path integral.
The Dirichlet condition imposes a restriction on the class of paths. Hence, the integral over a
restricted set of paths is bounded by G in equation (15).

If inequality (15) is satisfied then there exists a positive definite bilinear form GB such that

G(X,X′) = GD(X,X′) + GB(X,X′). (16)

Clearly, on the boundary

G(0, x; 0, x ′) = GB(0, x; 0, x ′) ≡ GE(x, x ′) (17)

GE defines a non-negative bilinear form on the set of functions defined on the boundary B.

Theorem 1. Let µ0 be the Gaussian measure with the mean zero and the covariance G.
Assume that G and GD are real positive definite bilinear forms satisfying inequality (15).
Then, there exist independent Gaussian random fields φD and φB with the mean equal to zero
and the covariance GD and GB respectively such that for any integrable function exp(−WI)F∫

dµ0(φ) exp(−WI(φ))F (φ) =
∫

dµD(φD) dµB(φB) exp(−WI(φD + φB))F (φD + φB).

(18)

In this sense

φ = φD + φB. (19)
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The theorem and its proof can be found in [13, 14]. It is easy to check equation (18) for
the generating functional (then exp(−WI(φ))F (φ) = exp(φ, J )). On a perturbative level the
general formula (18) follows from the one for the generating functional. For the general theory
of ‘conditioning’ (15) see [13, 14]. Equation (18) is discussed in the lattice approximation
in [14] (section 8.1). Another derivation and a discussion of its relevance to the AdS-CFT
correspondence can be found in [22]. The relevance of an average over the boundary values
for the Hamiltonian formulation of the quantum field theory is discussed in [23].

Let us note that on a formal level

dµD(φD) = DφD exp
(− 1

2 (φD,ADφD)
)

where AD is the Laplace–Beltrami operator with the Dirichlet boundary conditions. On a
formal level ADφ0 = 0. Hence, dµD(φD + φ0) = dµD(φD) although strictly speaking the
shift of µD by φ0 does not make sense because φ0 does not vanish on the boundary. We
treat the rhs of equation (18) (before an integration over φB) as a rigorous version of the QFT
shifted by a classical solution. This interpretation is suggested by

Theorem 2. Let GD be the Dirichlet Green function of the operator A (equation (3)). Let G be
another real solution of equation (3) satisfying inequality (15). Then, there exists a Gaussian
random field � defined on the boundary B with the mean zero and the covariance GE such
that (in the sense of L2(dP) integrals [15])

φB(X) =
∫
B

dxb

√
gD(X, xb)�(xb) (20)

where D(X, xb) is the Green function solving the boundary value problem for equation (13).

Proof. Let us note that GD as well as G satisfy the same equation (3). Then, their difference
GB = G − GD satisfies the equations

A(X)GB(X,X′) = A(X′)GB(X,X′) = 0 (21)

and the boundary condition GB(0, x; 0, x ′) = GE(x, x ′). We can solve equation (21) with the
given boundary condition GE

GB(X,X′) =
∫
B

dxb

√
gD(X, xb)

∫
B

dx ′
b

√
gD(X′, x ′

b)GE(xb, x
′
b) (22)

where D is the Green function solving the Dirichlet boundary problem for equation (13). The
bilinear form GE (17) defines a Gaussian field � on the probability space (�,�, P ) (see
section 2) with the mean zero and the covariance

〈�(x)�(x ′)〉 = GE(x, x ′). (23)

We define φ̃B by the rhs of equation (20) where the integral can be understood in the sense of
the L2(dP) convergence of the Riemann sums (see, e.g., [15]). For the proof of the theorem
(φ̃ = φ) it is sufficient to show that the covariance of φ̃B coincides (as a bilinear form) with
GB . This is a consequence of equation (22). �

Let us note that there exists the Gaussian measure νB such that∫
dνB(�)�(x)�(x ′) = GE(x, x ′).

νB can be defined by µB as νB = µB ◦ T where T (�) = φB is the one-to-one map (20)
expressing the solution of equation (13) by its boundary value. We can see that if there is
a QFT with a two-point function G non-vanishing on the boundary then there is the unique
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choice of φ0 solving equation (13) such that φ = φD + φ0 is a realization of a random field
with the boundary value �. An average over � leads to the Green function G.

In the example of the hyperbolic space (14) (with the Poincare coordinates) the solution
(20) of the Dirichlet boundary problem (13) can be expressed by its boundary value
φB(y = 0, x) = �(x) [17]

φB(X) = y
d
2

∫
dp exp(ipx)|p| d

2 Kd
2
(|p|y)φ̃(p) (24)

where φ̃ denotes the Fourier transform of � and Kν is the modified Bessel function of
order ν [29]. Comparing with equation (20) we obtain (X = (y, x))

D(X, x ′) = (2π)−dy
3
2 d+1

∫
dp exp(ip(x − x ′))|p| d

2 Kd
2
(|p|y).

The two-point function GE resulting from the QFT on the hyperbolic space constructed in
[4, 6, 10] is GE = − ln|x − x ′| [9, 24–26]. In the Fourier transforms (up to an inessential
normalization) we have (see the discussion in [4, 20, 21, 25])

〈φ̃(p)φ̃∗(p′)〉 = δ(p − p′)|p|−d . (25)

We may apply equation (25) to calculate 〈φB(X)φB(X′)〉. As a solution of equation (21)
after an analytic continuation to the real time it must coincide with the Hadamard two-point
function (vacuum expectation value of an anticommutator of quantum scalar fields) which is
usually denoted by G(1)(X,X′) (the formula for GB in the hyperbolic space can be found in
[26] and for GD in [30])

GB(X,X′) = 〈φB(X)φB(X′)〉 = (yy ′)
d
2

∫
dp exp(ip(x − x ′))Kd

2
(|p|y)Kd

2
(|p|y ′). (26)

4. Non-linear boundary value problem

We can modify the formulation (6)–(13) of QFT on manifolds with a boundary so that
the interaction V (φ) is taken into account already at the classical level. Then, instead of
equation (13) we consider the equation

−Aψ = V ′(ψ) (27)

or in the integral form

ψ(X) = φB(X) +
∫

dX′ √GGD(X,X′)V ′(ψ(X′)) (28)

where φB is defined in equation (20). In order to express the functional integral (6) in terms
of ψ let us introduce a differential operator

Aψ = A + V ′′(ψ). (29)

Define Gψ

D as the Dirichlet Green function of Aψ . Let µψ be the Gaussian measure with the
mean zero and the covariance Gψ

D . Then, the formula (18) reads (under the assumption that
the function on the rhs of equation (30) is integrable)∫

dµ0(φ) exp(−WI(φ))F (φ) =
∫

dµB(φB) exp(W0(φB) − W(ψ)) det(Aψ)−
1
2 det(A)

1
2

∫
dµψ(φD) exp

(
−

∫
dX

√
GV (φD + ψ) +

∫
dX

√
GV (ψ) +

∫
dX

√
GV ′(ψ)φD

+
1

2

∫
dX

√
GφDV ′′(ψ)φD

)
F(φD + ψ). (30)
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For the proof let us shift variables in equation (18) and apply equations (9)–(12). Then,

dµD(φD + χ) exp

(
−

∫
dX

√
GV (φD + φB + χ)

)
F(φD + φB + χ)

= dµD(φD)) exp

(
−1

2

∫
dX

√
GχAχ

)
F(φD + ψ)

× exp

(
−

∫
dX

√
GχAφD −

∫
dX

√
GV (φD + ψ)

)
(31)

where in the second step we inserted χ = ψ − φB (χ = 0 on the boundary, hence the shift is
admissible). Next, we make use of AφB = 0 (then Aψ = Aχ ), subtract the first two terms of
the Taylor expansion of V (φD + ψ) in ψ and apply the formula for a Gaussian integral of an
exponential of a quadratic form [16]:

dµD(φD)) exp

(
−1

2

∫
dX

√
GφDV ′′(ψ)φD

)
= (detAψ)−

1
2 dµψ(φD). (32)

The final result is expressed in equation (30). In this equation exp(−W(ψ)) is the

effective action in the tree approximation (discussed by [11]) and detA− 1
2

ψ gives the one-
loop approximation to the effective action in QFT with the boundary value �. The remaining
dµψ(φD) integral in equation (30) can be calculated in perturbation expansion. It starts with
higher powers n (n � 3) of φD leading to corrections in higher loops to the effective action.

5. Conclusions

In this section, we derive some relations between correlation functions with respect to various
measures discussed in earlier sections. Let us define

Z[�] = exp(−W0(φB))

∫
dµD(φD) exp(−WI(φD + φB)) (33)

where φB is defined in equation (20) with � as a fixed boundary value. The definition (33) is
introduced in such a way that it agrees with the large N formula of [2] and the semiclassical
calculations of [11] and those in equation (30) (see also a discussion in [27]).

If Z[�] is the generating functional then there exists a field O(x) such that

Z[�] =
〈
exp

(∫
B
O(x)�(x)

√
g dx

)〉
. (34)

Treating Z[�] as the generating functional we can calculate

δ

δ�(x1)
· · · δ

δ�(xn)
Z[�]|�=0 =

(
D

δ

δφB

)
(x1) · · ·

(
D

δ

δφB

)
(xn)

exp(−W0(φB))

∫
dµD(φD) exp(−WI(φD + φB))|φB=0

(35)

where (
D

δ

δφB

)
(x) ≡

∫
dX

√
GD(X, x)

δ

δφB(X)

and

W0(φB) = 1
2 (φB,AφB).
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We wish to compare these correlation functions with those of the bulk field φ defined by the
generating functional

S[J ] =
∫

dµ0(φ) exp(−WI(φ) + (J, φ)). (36)

Then, the correlation functions can be calculated from the formula

δ

δJ (X1)
· · · δ

δJ (Xn)
Z[J ]|J=0 =

(
G

δ

δφc

)
(X1) · · ·

(
G

δ

δφc

)
(Xn)

exp

(
1

2
(φc,Aφc)

) ∫
dµ0(φ) exp(−WI(φ + φc))|φc=0

(37)

where on the rhs we have absorbed the linear term of the exponential (36) into a shift of the
measure according to equations (9) and (10) with φc = GJ and J = Aφc. It is clear from
equations (35) and (37) that a perturbative calculation of n-point correlation functions of O
and φ involves the same graphs and only the propagators are different. The relation between
(35) and (37) has been discovered earlier by Duetsch and Rehren [22] (see also [28]). A
Hamiltonian derivation of the relation between differentiation with respect to boundary values
and sources J can be found in [23].

The field theory in the bulk (6)–(7) is an integral over Z[�]

Z0 =
∫

dνB(�) exp(W0(φB))Z[�]. (38)

We can obtain a connection between some other correlation functions. Generalizing
equation (38) let us define the generating functional SD[φB; J ] in the φD theory shifted
by a background field φB

SD[φB; J ] =
∫

dµD(φD) exp(−WI(φD + φB)) exp

(∫
dX

√
GJφD

)
. (39)

Then, from equation (18) the generating functional for correlation functions of the fields φ in
the model (6) is

S[J ] =
∫

dµB(φB) exp

(∫
dX

√
GJφB

)
SD[φB; J ]. (40)

It can be seen that φD and φB enter symmetrically in equation (18). Hence, we may also write

S[J ] =
∫

dµD(φD) exp

(∫
dX

√
GJφD

)
SB[φD; J ]. (41)

Differentiating both sides of equations (40) and (41) we obtain a relation between correlation
functions of the fields φ, φD and φB . The form of the correlation functions in the model (6) at
the boundary points xj ∈ B is a simple consequence of equation (41)

〈φ(x1) · · · φ(xn)〉 =
∫

dµD(φD)

∫
dνB(�) exp(−WI(φD + φB))�(x1) · · · �(xn). (42)

In particular, if the interaction is concentrated only on the boundary

WI(φ) =
∫
B

dx
√

gV (φ(0, x))

then φD = 0 in WI in equation (42) and the functional integral (42) is the same as in QFT
on B defined by the free field measure dνB with the covariance GE(x, x′). In the case of the
hyperbolic space this covariance is logarithmic. Hence, ultraviolet problem is the same as for
quantum fields in two dimensions.
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We think that the QFT theory on a boundary of a curved manifold is interesting for
itself because of its remarkable regularity expressed (for the hyperbolic space) in the strong
decay (25) in the momentum space. However, the main result of this paper is formulated in
equations (40)–(42). The formulae connecting the correlation functions of fields in various
field theoretic models can shed some light on relations of the AdS-CFT type.
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